
VisiOmatic 3:
Remote image visualization with new Python-based features

Emmanuel Bertin,1,2 and Conrad Holmberg1

1Canada-France-Hawaii Telescope, USA; bertin@cfht.hawaii.edu

2AIM / CEA / CNRS / Université Paris-Saclay / Université Paris Cité, F-91191

Gif-sur-Yvette, France

Abstract. The VisiOmatic package is a comprehensive remote visualization system
designed for large, multispectral astronomical image datasets. We present the third ver-
sion of the package, primarily developed for advanced "quicklook" image visualization
of imaging data at CFHT, but versatile enough for a wide range of applications, includ-
ing use as a stand-alone viewer. The server-side code has been completely rewritten
in Python, introducing new features such as support for hyperspectral datacubes and
multi-extension files from mosaic cameras, just-in-time caching of FITS data, and tem-
poral image sequence playback. VisiOmatic 3 is released under the MIT license.

1. Introduction

The increasing scale of astronomical datasets and reactivity requirements from mod-
ern research programs have highlighted the need for tools that enable efficient remote
access and interactive visualization. As observatories generate increasingly large and
detailed images, traditional desktop-based software encounters challenges related to
accessibility, scalability, and real-time usability, particularly in distributed research en-
vironments.

Web-based platforms provide a practical solution to these limitations, allowing re-
searchers to explore and analyze data remotely through standard browsers. VisiOmatic1

(Bertin et al. 2015, 2019) was designed to be embedded in such platforms, offering a
framework for visualizing large astronomical images directly in the browser. The third
version of VisiOmatic, developed at the Canada-France-Hawaii Telescope (CFHT), in-
cludes a complete rewrite of the server code in Python and introduces several new
features that are particularly beneficial for observatories, such as providing PIs with
advanced quick-look capabilities for exposures shortly after acquisition.

2. Technical Overview

As a web application, VisiOmatic consists of a client component and a server compo-
nent.

1https://www.visiomatic.org

1



2 Bertin and Holmberg

The VisiOmatic web client is built on the Leaflet2 JavaScript mini-framework.
The client interface is fully asynchronous and entirely customizable through module
options, themes, and Cascading Style Sheets (CSS). It is compatible with touchscreen
devices such as those running iOS and Android. The client code relies solely on EC-
MAScript 2016+ and HTML5. Version 3 of the web interface introduces several new
features, including the ability to display multi-extension FITS files from mosaic cam-
eras (Fig. 1) and animation and real-time color compositing of hyperspectral datacubes.

Figure 1. Screenshot of a mosaic exposure from the CFHT MegaPrime instru-
ment, with overlays of the Gaia DR3 catalog and an image profile, displayed using
the VisiOmatic web client in a dark theme configuration.

The server component of version 3 is written in Python and communicates with
clients via the FastAPI web framework3, which implements the Asynchronous Server
Gateway Interface (ASGI) specification (Fig. 2). This replaces the legacy IIPImage-
astro Fast Common Gateway Interface (FCGI) C++ code of earlier versions.

The server component operates as a web service that encodes large, high-resolution
images on-the-fly and delivers them as compressed “tiles” in image formats natively
supported by web browsers. The server code processes science-grade hyperspectral
data stored in floating-point format, and perform operations such as amplitude rescal-

2https://leafletjs.com

3https://fastapi.tiangolo.com



VisiOmatic 3 3

Figure 2. The VisiOmatic service can be accessed through a reverse proxy or
directly via the built-in Uvicorn ASGI HTTP server for local use.

ing and channel mixing before transmitting the resulting image to the client. The web
API is RESTful and adheres to the OpenAPI specification4.

Previous versions of VisiOmatic required converting original image data files into
a tiled, multi-resolution TIFF format. In contrast, the new version works directly with
FITS images, including data cubes and multi-extension FITS (MEF) files, using a just-
in-time caching strategy. When a client queries data from a given image for the first
time, the FITS image pixels are rebinned at various resolutions, tiled, cached on disk,
and mapped to memory. Subsequent queries access the cached data, unless the FITS
file has changed or the cache entry has been deleted to accomodate more recent queries,
following a Least-Recently Used (LRU) cache replacement policy.

3. Performance

With all image processing and compositing performed server-side, the volume of data
transmitted to the browser and the computational load on the client are reduced to a
minimum. However the Python server code can become a performance bottleneck when
handling concurrent connections from a large number of users. Fortunately, VisiOmatic
leverages Python’s multiprocessing capabilities, and performance tests indicate that the
current server code can deliver over a thousand unbuffered 256 × 256 JPEG tiles per
second per CPU core (Fig. 3). Thus, a single, modestly sized server can support up
to a thousand concurrent users for monochannel images and 10+ concurrent users for
multi- or hyperspectral images.

The image caching process — performed only once when an image is first queried
— achieves a throuput of approximately 100 megapixels per second on a Gen.4 SSD:
a 380 megapixel exposure from the MegaPrime instrument can be cached in about 4
seconds on modern hardware equipped with fast storage.

4https://spec.openapis.org/oas/latest.html



4 Bertin and Holmberg

1 10 100 1000 10000
Number of concurrent requests

0

2500

5000

7500

10000

12500

15000

17500
Ti
le
s s

er
ve

d 
pe

r s
ec

on
d

10μs

100μs

1ms

10ms

100ms

1s

La
te
nc

y

Figure 3. Tile throughput and latency as a function of concurrency for a Vi-
siOmatic server running on a single machine equipped with a Gen.4 SSD and a 13th
Gen., 12-core Intel CPU. The tiles are 256 × 256 JPEG images.

4. Conclusion

VisiOmatic 3 represents a significant step forward from previous versions. The tran-
sition to Python for the server code simplifies the implementation of new features for
astronomers, while the just-in-time caching of FITS data enables the tool to function as
a regular FITS viewer. VisiOmatic 3 has been successfully tested on the Linux, macOS
and Windows operating systems and is available via the Python Package Index5, on
GitHub6, and as a Docker image7.

Acknowledgments. This work made use of Astropy:8 a community-developed
core Python package and an ecosystem of tools and resources for astronomy (Astropy
Collaboration and Contributors 2022).

References

Astropy Collaboration and Contributors 2022, ApJ, 935, 167. 2206.14220
Bertin, E., Marmo, C., & Bouy, H. 2019, in Astronomical Data Analysis Software and Systems

XXVI, edited by M. Molinaro, K. Shortridge, & F. Pasian, vol. 521 of Astronomical
Society of the Pacific Conference Series, 651

Bertin, E., Pillay, R., & Marmo, C. 2015, Astronomy and Computing, 10, 43. 1403.6025

5https://pypi.org/project/VisiOmatic

6https://github.com/astromatic/visiomatic

7https://hub.docker.com/r/ceerad/visiomatic

8https://www.astropy.org


